Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.740
Filtrar
1.
Sci Rep ; 14(1): 9556, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664465

RESUMEN

Bighead carp (Hypophthalmichthys nobilis), silver carp (H. molitrix), black carp (Mylopharyngodon piceus), and grass carp (Ctenopharyngodon idella), are invasive species in North America. However, they hold significant economic importance as food sources in China. The drifting stage of carp eggs has received great attention because egg survival rate is strongly affected by river hydrodynamics. In this study, we explored egg-drift dynamics using computational fluid dynamics (CFD) models to infer potential egg settling zones based on mechanistic criteria from simulated turbulence in the Lower Missouri River. Using an 8-km reach, we simulated flow characteristics with four different discharges, representing 45-3% daily flow exceedance. The CFD results elucidate the highly heterogeneous spatial distribution of flow velocity, flow depth, turbulence kinetic energy (TKE), and the dissipation rate of TKE. The river hydrodynamics were used to determine potential egg settling zones using criteria based on shear velocity, vertical turbulence intensity, and Rouse number. Importantly, we examined the difference between hydrodynamic-inferred settling zones and settling zones predicted using an egg-drift transport model. The results indicate that hydrodynamic inference is useful in determining the 'potential' of egg settling, however, egg drifting paths should be taken into account to improve prediction. Our simulation results also indicate that the river turbulence does not surpass the laboratory-identified threshold to pose a threat to carp eggs.


Asunto(s)
Carpas , Hidrodinámica , Ríos , Animales , Carpas/fisiología , Especies Introducidas , Óvulo/fisiología , Modelos Biológicos , Modelos Teóricos
2.
Sci Rep ; 14(1): 9515, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664464

RESUMEN

Stroke, a major global health concern often rooted in cardiac dynamics, demands precise risk evaluation for targeted intervention. Current risk models, like the CHA 2 DS 2 -VASc score, often lack the granularity required for personalized predictions. In this study, we present a nuanced and thorough stroke risk assessment by integrating functional insights from cardiac magnetic resonance (CMR) with patient-specific computational fluid dynamics (CFD) simulations. Our cohort, evenly split between control and stroke groups, comprises eight patients. Utilizing CINE CMR, we compute kinematic features, revealing smaller left atrial volumes for stroke patients. The incorporation of patient-specific atrial displacement into our hemodynamic simulations unveils the influence of atrial compliance on the flow fields, emphasizing the importance of LA motion in CFD simulations and challenging the conventional rigid wall assumption in hemodynamics models. Standardizing hemodynamic features with functional metrics enhances the differentiation between stroke and control cases. While standalone assessments provide limited clarity, the synergistic fusion of CMR-derived functional data and patient-informed CFD simulations offers a personalized and mechanistic understanding, distinctly segregating stroke from control cases. Specifically, our investigation reveals a crucial clinical insight: normalizing hemodynamic features based on ejection fraction fails to differentiate between stroke and control patients. Differently, when normalized with stroke volume, a clear and clinically significant distinction emerges and this holds true for both the left atrium and its appendage, providing valuable implications for precise stroke risk assessment in clinical settings. This work introduces a novel framework for seamlessly integrating hemodynamic and functional metrics, laying the groundwork for improved predictive models, and highlighting the significance of motion-informed, personalized risk assessments.


Asunto(s)
Atrios Cardíacos , Hemodinámica , Hidrodinámica , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/fisiopatología , Femenino , Masculino , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/diagnóstico por imagen , Persona de Mediana Edad , Medición de Riesgo/métodos , Anciano , Simulación por Computador , Modelos Cardiovasculares , Imagen por Resonancia Cinemagnética/métodos
3.
J Chromatogr A ; 1722: 464869, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604057

RESUMEN

Hydrodynamics, efficiency, and loading capacity of two semi-packed columns with different cross sections (NANO 315 µm x 18 µm; CAP 1000 µm x 28 µm) and similar pillar diameter and pillar-pillar distance (respectively 5 µm and 2.5 µm) have been compared in high-pressure gas chromatography. A flow prediction tool has been first designed to determine pressure variations and hold-up time across the chromatographic system taking into account the rectangular geometry of the ducts into the semi-packed columns. Intrinsic values of Height Equivalent to Theoretical Plate were determined for NANO and CAP columns using helium as carrier gas and similar values have been obtained (30 µm) for the two columns. Loading capacity of semi-packed columns were determined for decane at 70 °C using helium, and the highest value was obtained from CAP column (larger cross section and stationary phase content). Finally, significant HETP improvement (down to 15 µm) and peak shape were observed when carbon dioxide was used as carrier gas, suggesting mobile phase adsorption on stationary phase in high pressure conditions.


Asunto(s)
Helio , Presión , Cromatografía de Gases/métodos , Cromatografía de Gases/instrumentación , Helio/química , Hidrodinámica , Dióxido de Carbono/química , Adsorción
4.
Phys Rev E ; 109(3-1): 034403, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632722

RESUMEN

Thiovulum majus, which is one of the fastest known bacteria, swims using hundreds of flagella. Unlike typical pusher cells, which swim in circular paths over hard surfaces, T. majus localize near hard boundaries by turning their flagella to exert a net force normal to the surface. To probe the torques that stabilize this hydrodynamically bound state, the trajectories of several thousand collisions between a T. majus cell and a wall of a quasi-two-dimensional microfluidic chamber are analyzed. Measuring the fraction of cells escaping the wall either to the left or to the right of the point of contact-and how this probability varies with incident angle and time spent in contact with the surface-maps the scattering dynamics onto a first passage problem. These measurements are compared to the prediction of a Fokker-Planck equation to fit the angular velocity of a cell in contact with a hard surface. This analysis reveals a bound state with a narrow basin of attraction in which cells orient their flagella normal to the surface. The escape angle predicted by matching these near field dynamics with the far-field hydrodynamics is consistent with observation. We discuss the significance of these results for the ecology of T. majus and their self-organization into active chiral crystals.


Asunto(s)
Flagelos , Modelos Biológicos , Natación , Hidrodinámica
5.
J Biomech ; 167: 112086, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38615481

RESUMEN

Accurate assessment of portacaval pressure gradient (PCG) in patients with portal hypertension (PH) is of great significance both for diagnosis and treatment. This study aims to develop a noninvasive method for assessing PCG in PH patients and evaluate its accuracy and effectiveness. This study recruited 37 PH patients treated with transjugular intrahepatic portosystemic shunt (TIPS). computed tomography angiography was used to create three dimension (3D) models of each patient before and after TIPS. Doppler ultrasound examinations were conducted to obtain the patient's portal vein flow (or splenic vein and superior mesenteric vein). Using computational fluid dynamics (CFD) simulation, the patient's pre-TIPS and post-TIPS PCG was determined by the 3D models and ultrasound measurements. The accuracy of these noninvasive results was then compared to clinical invasive measurements. The results showed a strong linear correlation between the PCG simulated by CFD and the clinical invasive measurements both before and after TIPS (R2 = 0.998, P < 0.001 and R2 = 0.959, P < 0.001). The evaluation accuracy of this noninvasive method reached 94 %, and the influence of ultrasound result errors on the numerical accuracy was found to be marginal if the error was less than 20 %. Furthermore, the information about the hemodynamic environment in the portal system was obtained by this numerical method. Spiral flow patterns were observed in the portal vein of some patients. In a conclusion, this study proposes a noninvasive numerical method for assessing PCG in PH patients before and after TIPS. This method can assist doctors in accurately diagnosing patients and selecting appropriate treatment plans. Additionally, it can be used to further investigate potential biomechanical causes of complications related to TIPS in the future.


Asunto(s)
Hipertensión Portal , Derivación Portosistémica Intrahepática Transyugular , Humanos , Derivación Portosistémica Intrahepática Transyugular/efectos adversos , Derivación Portosistémica Intrahepática Transyugular/métodos , Hidrodinámica , Vena Porta/diagnóstico por imagen , Hipertensión Portal/diagnóstico por imagen , Hemodinámica
6.
Environ Monit Assess ; 196(5): 427, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573508

RESUMEN

The "spatial pattern-wind environment-air pollution" within building clusters is closely interconnected, where different spatial pattern parameters may have varying degrees of impact on the wind environment and pollutant dispersion. Due to the complex spatial structure within industrial parks, this complexity may lead to the accumulation and retention of air pollutants within the parks. Therefore, to alleviate the air pollution situation in industrial parks in China and achieve the circular transformation and construction of parks, this study takes Hefei Circular Economy Demonstration Park as the research object. The microscale Fluent model in computational fluid dynamics (CFD) is used to finely simulate the wind flow field and the diffusion process of pollutants within the park. The study analyzes the triad relationship and influence mechanism of "spatial pattern-wind environment-air pollution" within the park and studies the influence of different spatial pattern parameters on the migration and diffusion of pollutants. The results show a significant negative correlation between the content of pollutants and wind speed inside the industrial park. The better the wind conditions, the higher the air quality. The spatial morphology parameters of the building complex are the main influences on the condition of its internal wind environment. Building coverage ratio and degree of enclosure have a significant negative correlation with wind conditions. Maintaining them near 0.23 and 0.37, respectively, is favorable to the quality of the surrounding environment. Moreover, the average height of the building is positively correlated with the wind environment condition. The rate of transport and dissipation of pollutants gradually increases as the average building height reaches 16 m. Therefore, a reasonable building planning strategy and arrangement layout can effectively improve the wind environment condition inside the park, thus alleviating the pollutant retention situation. The obtained results serve as a theoretical foundation for optimizing morphological structure design within urban industrial parks.


Asunto(s)
Contaminación del Aire , Contaminantes Ambientales , Hidrodinámica , Viento , Monitoreo del Ambiente
7.
World J Urol ; 42(1): 240, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630158

RESUMEN

PURPOSE: To evaluate the impact of ureteroscope position within renal cavities as well as different locations of the tip of the ureteral access sheath (UAS) on fluid dynamics during retrograde intrarenal surgery (RIRS). MATERIALS AND METHODS: A prospective observational clinical study was performed. Measurements with a flexible ureteroscope placed in the upper, middle and lower calyces were obtained with the tip of the UAS placed either 2 cm below the pyelo-ureteric junction (PUJ), or at the level of the iliac crest. RESULTS: 74 patients were included. The outflow rates from the middle and upper calyxes were statistically significantly higher compared to the lower calyx, both with the UAS close to the pyelo-ureteric junction and at the iliac crest. When the UAS was withdrawn and positioned at the level of the iliac crest, a significant decrease in outflow rates from the upper (40.1 ± 4.3 ml/min vs 35.8 ± 4.1 ml/min) and middle calyces (40.6 ± 4.0 ml/min vs 36.8 ± 4.6 ml/min) and an increase in the outflow from the lower calyx (28.5 ± 3.3 ml/min vs 33.7 ± 5.7 ml/min) were noted. CONCLUSIONS: Our study showed that higher fluid outflow rates are observed from upper and middle calyces compared to lower calyx. This was true when the UAS was positioned 2 cm below the PUJ and at the iliac crest. Significant worsening of fluid dynamics from upper and middle calyces was observed when the UAS was placed distally at the level of the iliac crest. While the difference was statistically significant, the absolute change was not significant. In contrast, for lower calyces, a statistically significant improvement was documented.


Asunto(s)
Uréter , Ureteroscopios , Humanos , Hidrodinámica , Riñón , Endoscopía , Uréter/cirugía
8.
Sci Rep ; 14(1): 8194, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589554

RESUMEN

Accurate modeling of cerebral hemodynamics is crucial for better understanding the hemodynamics of stroke, for which computational fluid dynamics (CFD) modeling is a viable tool to obtain information. However, a comprehensive study on the accuracy of cerebrovascular CFD models including both transient arterial pressures and flows does not exist. This study systematically assessed the accuracy of different outlet boundary conditions (BCs) comparing CFD modeling and an in-vitro experiment. The experimental setup consisted of an anatomical cerebrovascular phantom and high-resolution flow and pressure data acquisition. The CFD model of the same cerebrovascular geometry comprised five sets of stationary and transient BCs including established techniques and a novel BC, the phase modulation approach. The experiment produced physiological hemodynamics consistent with reported clinical results for total cerebral blood flow, inlet pressure, flow distribution, and flow pulsatility indices (PI). The in-silico model instead yielded time-dependent deviations between 19-66% for flows and 6-26% for pressures. For cerebrovascular CFD modeling, it is recommended to avoid stationary outlet pressure BCs, which caused the highest deviations. The Windkessel and the phase modulation BCs provided realistic flow PI values and cerebrovascular pressures, respectively. However, this study shows that the accuracy of current cerebrovascular CFD models is limited.


Asunto(s)
Hemodinámica , Hidrodinámica , Velocidad del Flujo Sanguíneo , Presión Arterial , Simulación por Computador , Circulación Cerebrovascular , Modelos Cardiovasculares
9.
Sci Data ; 11(1): 421, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653962

RESUMEN

Nearshore hydro- and morphodynamic data were collected during a field experiment under calm conditions, moderate conditions, and storm conditions with dune erosion in the collision regime. The experiment was conducted on the Sand Engine near Kijkduin, the Netherlands, from October 18, 2021, to January 7, 2022. Two artificial unvegetated dunes were constructed just above the high water line to measure storm erosion and dune impacts from higher water levels and waves. During the experiment, three storms occurred that resulted in significant erosion of both dunes. The collected hydrodynamic data include pressure sensor and velocimeter data along two cross-shore transects. The collected morphodynamic data include bathymetry and topography surveys, optical backscatter sensor data in the inner surf zone, and a continuous cross-shore line-scanning lidar data set of the dune face. This comprehensive data set can be used to (1) study relevant nearshore hydrodynamic and morphodynamic processes that occur during calm conditions, moderate conditions, and storm conditions with dune erosion in the collision regime, and (2) validate existing dune erosion models.


Asunto(s)
Hidrodinámica , Países Bajos , Monitoreo del Ambiente
10.
Phys Rev Lett ; 132(13): 138402, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38613272

RESUMEN

Protein folding is a fundamental process critical to cellular function and human health, but it remains a grand challenge in biophysics. Hydrodynamic interaction (HI) plays a vital role in the self-organization of soft and biological materials, yet its role in protein folding is not fully understood despite folding occurring in a fluid environment. Here, we use the fluid particle dynamics method to investigate many-body hydrodynamic couplings between amino acid residues and fluid motion in the folding kinetics of a coarse-grained four-α-helices bundle protein. Our results reveal that HI helps select fast folding pathways to the native state without being kinetically trapped, significantly speeding up the folding kinetics compared to its absence. First, the directional flow along the protein backbone expedites protein collapse. Then, the incompressibility-induced squeezing flow effects retard the accumulation of non-native hydrophobic contacts, thus preventing the protein from being trapped in local energy minima during the conformational search of the native structure. We also find that the significance of HI in folding kinetics depends on temperature, with a pronounced effect under biologically relevant conditions. Our findings suggest that HI, particularly the short-range squeezing effect, may be crucial in avoiding protein misfolding.


Asunto(s)
Hidrodinámica , Pliegue de Proteína , Humanos , Aminoácidos , Biofisica , Cinética
11.
BMC Oral Health ; 24(1): 321, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461300

RESUMEN

BACKGROUND: Root canal therapy is one of the main treatments for root canal diseases, and effective irrigation is the key to successful treatment. Side-vented needle is one of the commonly used needle types in clinic. In the real root canal, due to the influence of the curvature of the root canal, the irrigation flow field in different needle directions shows obvious differences. At the same time, changes in root canal curvature and working depth will lead to changes in irrigation efficiency and the flow field. Both the mainstream of the irrigation flow and the shear stress near the wall changes significant. Consequently, either the replacement in the root canal or the removal efficiency of the smear layers is apparently modified. MATERIALS AND METHODS: In this paper, the permanent root canal of the maxillary first molar prepared until 15/04 were scanned by micro-CT, and then imported into the software for 3D reconstruction. The key parameters of flushing efficiency of 30G side needle at different working depths of 4.75 mm, 5 mm, 5.25 mm and 5.5 mm were compared. Meanwhile, the simulated models with different curvatures of 0°, 5°, 10°, 20° and 30° based on the real root canal were reconstructed to investigate the curvature effect on the irrigation efficiency. RESULTS: The results show that moderate working depth (such as 4.75 mm and 5.25 mm in present paper) helps to improve the replacement capacity of irrigation flow. At the same time, the apical pressure decreased as the working depth increased. The curvature of the root canal seriously affects the removal depth of the smear layers of the root canal. A root canal with a large curvature (especially 20° and 30°) can significantly improve the difficulty of irrigation. CONCLUSIONS: (1) Moderate working depth helps to improve the displacement capacity, the ERD of the irrigation flow is generally improved at the working depths of 4.75 mm and 5.25 mm, and the apical pressure will decrease with the increase of working depth. (2) The large curvature of the root canal can significantly improve the difficulty of irrigation. The curvature of the root canal can severely influence the removal depth of the smear layer on the wall. It can be found both the span and the depth of the ESS for little curvatures (5° and 10°) root canals are higher than those for large curvatures (20° and 30°).


Asunto(s)
Cavidad Pulpar , Capa de Barro Dentinario , Humanos , Preparación del Conducto Radicular/métodos , Hidrodinámica , Irrigantes del Conducto Radicular/uso terapéutico , Tratamiento del Conducto Radicular , Agujas , Irrigación Terapéutica
12.
Sci Rep ; 14(1): 5492, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448648

RESUMEN

This study compared computational fluid dynamic (CFD) model predictions on aerosol deposition in six asthmatic patients to the in-vivo results of the same group. Patient-specific ventilation and internal air distribution were prescribed using inspiratory and expiratory CT scans of each patient, accounting for individual lobar air flow distribution. Moreover, the significant influence of realistic mouth and throat geometries on regional deposition is demonstrated. The in-vivo data were obtained from single photon emission computed tomography (SPECT) in 6 subjects with mild asthma selected from a database of historical clinical trials. The governing flow and particle tracking equations were solved numerically using a commercial CFD tool, and the modeled deposition results were compared to the SPECT data. Good agreement was found between the CFD model, applying k-ω SST turbulence model, and SPECT in terms of aerosol deposition. The average difference for the lobar deposition obtained from CFD model and SPECT/CT data was 2.1%. The high level of agreement is due to applying patient specific airway geometries and inspiratory/expiratory CT images, anatomical upper airways, and realistic airway trees. The results of this study show that CFD is a powerful tool to simulate patient-specific deposition if correct boundary conditions are applied and can generate similar information obtained with functional imaging tools, such as SPECT.


Asunto(s)
Asma , Laringe , Humanos , Hidrodinámica , Tomografía Computarizada de Emisión de Fotón Único , Nariz , Asma/diagnóstico por imagen , Aerosoles y Gotitas Respiratorias
13.
Water Environ Res ; 96(3): e11011, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38477462

RESUMEN

The current study focuses on the degradation of Procion brilliant yellow H-E6G, an azo dye, using ultrasonic and hydrodynamic cavitation (HC), evaluating the impact of various parameters on the extent of degradation. The use of only ultrasound showed less oxidation capacity as indicated by only 19.1% degradation at an optimized power of 140 W, pH of 2.5, temperature of 40°C, and initial dye concentration of 15 ppm. The effectiveness of hybrid approaches involving US + H2 O2 , US + Fenton, and US + H2 O2 + potassium persulfate (KPS) was subsequently evaluated under optimized conditions. A notable enhancement in decolorization extent was observed for combined operations, including US + H2 O2 , US + Fenton, and US + H2 O2 + KPS (dual oxidant scheme) with the actual decolorization extents as 80.6%, 85%, and 92.2% respectively. An optimized scheme of US + H2 O2 + KPS was also utilized to decolorize the dye at a pilot scale using a US flow cell and also an HC reactor that yielded 91.8% and 88% reductions in initial concentration. The dye decolorization was elucidated to follow first-order kinetics for all the individual and combination approaches. The obtained values of the rate constants were also utilized for the evaluation of the synergistic index. A toxicity analysis was also performed on the dye, both before and following treatment, utilizing two bacterial strains. A comparative analysis of various treatment approaches has been presented focusing on factors such as cavitational yield, operational expenses, and energy requirements. The study elucidated that the combination of US + H2 O2 + KPS effectively removes Procion brilliant yellow H-E6G giving 92.2% as the maximum degradation at an operating cost of 0.1862 $/L. PRACTITIONER POINTS: First depiction of cavitative degradation of Procion brilliant yellow H-E6G Optimizing the equipment operating parameters and chemical oxidants Demonstration of optimized treatment scheme at pilot scale Evaluation of various approaches based on synergy and costs of treatment US + H2 O2  + KPS is the best approach for dye degradation.


Asunto(s)
Compuestos Azo , Bencenosulfonatos , Peróxido de Hidrógeno , Oxidantes , Hidrodinámica , Ultrasonido
14.
PLoS One ; 19(3): e0300293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38466668

RESUMEN

This paper develops a combined method to predict the volume of sliding mass for homogeneous slopes in an efficient manner. Firstly, the failure surface with minimum factor of safety (FS) in Limit Equilibrium Method is equated to that one determined by Smoothed Particle Hydrodynamics algorithm to obtain the threshold displacement value for unstable and stable particles. Secondly, the threshold displacement value is used to identify the volume of sliding mass using SPH. Finally, a regression model is developed based on a finite number of SPH simulations for homogeneous soil slopes. The proposed LEM-SPH based method is illustrated through a cohesive soil slope. It is concluded that the use of failure surface with minimum FS in LEM tends to underestimate the volume of sliding mass and to give an unconservative risk value. The Coefficient of Variation (Cov) of volume of sliding mass are 0.14, 0.28, 0.4, 0.48, 0.53 for Cov of soil properties = 0.2, 0.3, 0.4, 0.5, and 0.6, respectively. The uncertainty of soil properties has a significant effect on the mean value of volume of sliding mass and therefore the landslide risk value. The proposed method is necessitated for cases where large uncertainties in soil properties exist.


Asunto(s)
Algoritmos , Hidrodinámica , Simulación por Computador , Reproducibilidad de los Resultados
15.
Environ Sci Pollut Res Int ; 31(17): 26123-26140, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492146

RESUMEN

As an essential drinking water source and one of the largest eutrophic shallow lakes in China, the management of Lake Taihu requires an adequate understanding of its hydrodynamic characteristics. Studying the hydrodynamic characteristics of Lake Taihu based on field observations is limited owing to its large area and the lack of flow field stability. Previous studies using hydrodynamic models experienced challenges, such as dimensionality and lack of dynamic response analysis between flow field and realistic wind; therefore, the results were still inconclusive. In this study, a 3D model of Lake Taihu, calibrated and validated based on field observations, was used to simulate and compare three scenarios: windless, steady wind, and realistic wind. The hydrodynamic characteristics of Lake Taihu were analyzed as close to the actual conditions as possible. The results showed that wind-driven currents dominated the flow field in Lake Taihu, and the horizontal velocity driven by wind was more than 6 times that without wind. Observing a stable flow field in Lake Taihu was difficult because of the variability of realistic wind. The hydrodynamic characteristics of Lake Taihu were defined as "strongly affected by wind," "higher on the surface and smaller at the bottom," and "difference between the surface and the bottom." Vertical turbulent kinetic energy can be used to characterize the variable flow field of a wind-driven lake and has a positive correlation with wind speed. Therefore, it could be used as a key component to predict water blooms with practical implications.


Asunto(s)
Monitoreo del Ambiente , Lagos , Viento , Hidrodinámica , Eutrofización , China
16.
Transgenic Res ; 33(1-2): 35-46, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461212

RESUMEN

Chronic hepatitis B virus (HBV) poses a significant global health challenge as it can lead to acute or chronic liver disease and hepatocellular carcinoma (HCC). To establish a safety experimental model, a homolog of HBV-duck HBV (DHBV) is often used for HBV research. Hydrodynamic-based gene delivery (HGD) is an efficient method to introduce exogenous genes into the liver, making it suitable for basic research. In this study, a duck HGD system was first constructed by injecting the reporter plasmid pLIVE-SEAP via the ankle vein. The highest expression of SEAP occurred when ducks were injected with 5 µg/mL plasmid pLIVE-SEAP in 10% bodyweight volume of physiological saline for 6 s. To verify the distribution and expression of exogenous genes in multiple tissues, the relative level of foreign gene DNA and ß-galactosidase staining of LacZ were evaluated, which showed the plasmids and their products were located mainly in the liver. Additionally, ß-galactosidase staining and fluorescence imaging indicated the delivered exogenous genes could be expressed in a short time. Further, the application of the duck HGD model on DHBV treatment was investigated by transferring representative anti-HBV genes IFNα and IFNγ into DHBV-infected ducks. Delivery of plasmids expressing IFNα and IFNγ inhibited DHBV infection and we established a novel efficient HGD method in ducks, which could be useful for drug screening of new genes, mRNAs and proteins for anti-HBV treatment.


Asunto(s)
Carcinoma Hepatocelular , Virus de la Hepatitis B del Pato , Hepatitis B Crónica , Neoplasias Hepáticas , Animales , Humanos , Carcinoma Hepatocelular/patología , Patos/genética , Hepatitis B Crónica/patología , Neoplasias Hepáticas/patología , Hidrodinámica , Hígado , Virus de la Hepatitis B del Pato/genética , beta-Galactosidasa , ADN Viral/genética
17.
J Biomech Eng ; 146(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38529728

RESUMEN

We present an unsupervised deep learning method to perform flow denoising and super-resolution without high-resolution labels. We demonstrate the ability of a single model to reconstruct three-dimensional stenosis and aneurysm flows, with varying geometries, orientations, and boundary conditions. Ground truth data was generated using computational fluid dynamics, and then corrupted with multiplicative Gaussian noise. Auto-encoders were used to compress the representations of the flow domain geometry and the (possibly noisy and low-resolution) flow field. These representations were used to condition a physics-informed neural network. A physics-based loss was implemented to train the model to recover lost information from the noisy input by transforming the flow to a solution of the Navier-Stokes equations. Our experiments achieved mean squared errors in the true flow reconstruction of O(1.0 × 10-4), and root mean squared residuals of O(1.0 × 10-2) for the momentum and continuity equations. Our method yielded correlation coefficients of 0.971 for the hidden pressure field and 0.82 for the derived wall shear stress field. By performing point-wise predictions of the flow, the model was able to robustly denoise and super-resolve the field to 20× the input resolution.


Asunto(s)
Hemodinámica , Aprendizaje Automático , Física , Redes Neurales de la Computación , Hidrodinámica , Procesamiento de Imagen Asistido por Computador/métodos
18.
Talanta ; 273: 125884, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508128

RESUMEN

A hydrodynamic-based microfluidic chip consisted of two function units that could not only separate tumor cells (TCs) from whole blood but also remove residual blood cells was designed. The separation of TCs was achieved by a straight contraction-expansion array (CEA) microchannel on the front end of the chip. The addition of contractive structure brought a micro-vortex like Dean vortex that promoted cell focusing in the channel, while when cells entered the dilated region, the wall-induced lift force generated by the channel wall gave cells a push away from the wall. As the wall-induced lift force is proportional to the third power of the cell diameter, TCs with larger diameter will have a larger lateral migration under the wall-induced lift force, realizing the separation of TCs from blood sample. Fluorescent particles with diameters of 19.3 µm and 4.5 µm were used to simulate TCs and red blood cells, respectively, to verify the separation capacity of the proposed CEA microchannel for particles with different diameter. And a separation efficiency 98.7% for 19.3 µm particles and a removal rate 96.2% for 4.5 µm particles was observed at sample flow rate of 10 µL min-1 and sheath flow rate of 190 µL min-1. In addition, a separation efficiency about 96.1% for MCF-7 cells (stained with DiI) and removal rates of 96.2% for red blood cells (RBCs) and 98.7% for white blood cells (WBCs) were also obtained under the same condition. However, on account of the large number of blood cells in the blood, there will be a large number of blood cells remained in the isolated TCs, so a purification unit based on hydrodynamic filtration (HDF) was added after the separation microchannel. The purification channel is a size-dictated cell filter that can remove residual blood cells but retain TCs, thus achieving the purification of TCs. Combined the CEA microchannel and the purifier, the microchip facilitates sorting of MCF-7 cells from whole blood with a separation rate about 95.3% and a removal rate over 99.99% for blood cells at a sample flow rate of 10 µL min-1, sheath flow rate of 190 µL min-1 and washing flow rate of 63 µL min-1.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Hidrodinámica , Eritrocitos , Células MCF-7 , Leucocitos , Separación Celular
19.
Acta Biomater ; 178: 41-49, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38484832

RESUMEN

While most of current models investigating bone remodelling are based on matrix deformation, intramedullary pressure also plays a role. Bone remodelling is orchestrated by the Lacuno-Canalicular Network (LCN) fluid-flow. The aim of this review was hence to assess the influence of intramedullary pressure on the fluid circulation within the LCN. Three databases (Science Direct, Web of Science, and PubMed) were used. The first phase of the search returned 731 articles, of which 9 respected the inclusion/exclusion criteria and were included. These studies confirm the association between intramedullary pressure and fluid dynamics in the LCN. Among the included studies, 7 experimental studies using animal models and 2 numerical models were found. The studies were then ranked according to the nature of the applied loading, either axial compression or direct cyclic intramedullary pressure. The current review revealed that there is an influence of intramedullary pressure on LCN fluid dynamics and that this influence depends on the magnitude and the frequency of the applied pressure. Two studies confirmed that the influence was effective even without bone matrix deformation. While intramedullary pressure is closely associated with LCN fluid, there is a severe lack of studies on this topic. STATEMENT OF SIGNIFICANCE: Since the 1990's, numerical models developed to investigate fluid flow in bone submicrometric porous network are based on the flow induced by matrix deformation. Bone fluid flow is known to be involved in cells stimulation and hence directly influences bone remodeling. Different studies have shown that intramedullary pressure is also associated with bone mechanosensitive adaptation. This pressure is developed in bone due to blood circulation and is increased during loading or muscle stimulation. The current article reviews the studies investigating the influence of this pressure on bone porous fluid flow. They show that fluid flow is involved by this pressure even without bone matrix deformation. The current review article highlights the severe lack of studies about this mechanism.


Asunto(s)
Matriz Ósea , Huesos , Animales , Remodelación Ósea , Hidrodinámica , Modelos Animales , Osteocitos
20.
Environ Sci Pollut Res Int ; 31(16): 24344-24359, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443535

RESUMEN

Railway noise has become a significant concern for trackside residents due to increased volume of high-speed passenger and freight train traffic. To address this, active measures, such as reducing noise at the source, and passive measures, such as installing noise barriers along the transmission path, are widely being used. In urban areas, railway boundary walls are constructed to prevent encroachments of railway lands and to avoid pedestrian trespassing of railway tracks. This study aims to evaluate the effectiveness of such a boundary wall for reducing noise and proposes an improved alternative through computational fluid dynamics (CFD) simulations. Various noise barriers with different geometry, shape, and surface materials were simulated and validated with the field conditions based on a rectangular wall of height 2.75 m. Noise attenuation was evaluated by measuring railway noise spectra at different positions, including 0.5 m in front and behind the barrier and at the facade of the residential area. The insertion loss based on field measurements for a rectangular barrier of height 2.75 m was observed to be 5.2 dBA. The simulation results indicated a positive correlation between barrier height and insertion loss, with a maximum attenuation of 17 dBA achieved with a barrier of height 6 m. The most effective noise barrier for reducing railway noise was a T-shaped barrier with a height of 6 m and a projection length of 2 m, with an insertion loss of 22 dBA. This study recommends constructing the barrier with soft materials on its surface to reflect and absorb sound waves effectively. These findings have potential implications for urban planners and policymakers in designing effective noise barriers in residential areas near railway lines.


Asunto(s)
Ruido del Transporte , Vías Férreas , Ruido del Transporte/prevención & control , Hidrodinámica , Simulación por Computador , Acústica , Exposición a Riesgos Ambientales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA